SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance.

نویسندگان

  • Dawei Su
  • Hyo-Jun Ahn
  • Guoxiu Wang
چکیده

An in situ hydrothermal synthesis approach has been developed to prepare SnO2@graphene nanocomposites. The nanocomposites exhibited a high reversible sodium storage capacity of above 700 mA h g(-1) and excellent cyclability for Na-ion batteries. In particular, they also demonstrated a good high rate capability for reversible sodium storage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.

A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.

متن کامل

A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries.

SnO2/nitrogen-doped graphene nanohybrids have been synthesized by an in situ hydrothermal method, during which the formation of SnO2 nanocrystals and nitrogen doping of graphene occur simultaneously. The as-prepared SnO2/nitrogen-doped graphene nanohybrids exhibit enhanced electrochemical performance for sodium-ion batteries compared to SnO2/graphene nanocomposites. A systematic comparison betw...

متن کامل

Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-pre...

متن کامل

Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries

In this work, a synergistic effect of reduced graphene oxide (rGO) and polypyrrole (PPy) was studied in terms of their promotional role to enhance the capacity and cyclic stability of hollow SnO2 anodes in lithium-ion batteries. The core–shell structured hollow SnO2/rGO/PPy nanocomposites were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. Substant...

متن کامل

Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries

Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1(st) step) and solvothermal (2(nd) step) synthesis proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 49 30  شماره 

صفحات  -

تاریخ انتشار 2013